라플라스 변환 증명 | 라플라스 변환 기본 공식 유도 1889 명이 이 답변을 좋아했습니다

당신은 주제를 찾고 있습니까 “라플라스 변환 증명 – 라플라스 변환 기본 공식 유도“? 다음 카테고리의 웹사이트 th.taphoamini.com 에서 귀하의 모든 질문에 답변해 드립니다: https://th.taphoamini.com/wiki/. 바로 아래에서 답을 찾을 수 있습니다. 작성자 전기뉴비 이(가) 작성한 기사에는 조회수 3,954회 및 좋아요 36개 개의 좋아요가 있습니다.

라플라스 변환 증명 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 라플라스 변환 기본 공식 유도 – 라플라스 변환 증명 주제에 대한 세부정보를 참조하세요

간단한 램프 함수 포물선 함수 미분 적분 삼각함수

라플라스 변환 증명 주제에 대한 자세한 내용은 여기를 참조하세요.

라플라스 변환 – 수학과 사는 이야기

라플라스 변환을 공부하면 미분방정식을 대수방정식으로 바꾸고 해를 구하고 이를 역변환하여 미분 … 증명은 적분의 성질이므로 아주 간단하다.

+ 여기에 보기

Source: suhak.tistory.com

Date Published: 4/7/2022

View: 203

3.2 Laplace Transform-2(라플라스변환법 기본공식들)

오늘은 라플라스 변환공식들중 대표적인 것(다항함수, 지수함수, 삼각함수)들을 직접 계산해보고 결과를 얻어내 보겠습니다. 위의 표는 라플라스 변환표 …

+ 더 읽기

Source: lifelectronics.tistory.com

Date Published: 9/29/2022

View: 4626

[공업수학] 6.1 라플라스 변환, 라플라스 변환표, 일차변환 (s …

sint cost는 삼각함수의 배각공식(2배각 공식)을 이용해서 다음과 같이 바꿀 수 있습니다. 변환표에서 sin 2t와 대응 …

+ 더 읽기

Source: blog.naver.com

Date Published: 5/8/2022

View: 1715

라플라스 변환 – 나무위키

원래 라플라스 변환은 자연계의 운동들, 예를 들면 포락선(envelope) 같은 감쇠 현상을 설명하기 위해 고안된 개념이다. 위 공식에서 복소수 …

+ 여기에 표시

Source: namu.wiki

Date Published: 12/5/2022

View: 9645

15강. 라플라스 변환 / 라플라스 변환표 – 전자형 – Tistory

[ 라플라스 변환(Laplace Transform) ] 라플라스변환이란 시간영역에있는 함수를 주파수의 영역으로 … 위 식에서 2가지식에 대해서 증명하고 넘어가도록 하겠습니다.

+ 여기에 더 보기

Source: e-funny.tistory.com

Date Published: 2/2/2021

View: 1034

라플라스 변환의 성질(Properties of Laplace Transform)

[증명]. 식 (1.14)에 나온 적분을 식 (3.1)의 길쌈(convolution)으로 바꾸어서 식 (3.3)과 같은 라플라스 변환을 적용한다.

+ 여기에 보기

Source: ghebook.blogspot.com

Date Published: 12/8/2022

View: 5279

라플라스변환

라플라스 변환(Laplace Transform) … 라플라스 변환의 의미. 시간영역. 미분 방정식. 시간영역의. 해(解). 주파수영역. 대수 방정식 … 주요함수의 변환공식.

+ 여기를 클릭

Source: chibum.files.wordpress.com

Date Published: 12/2/2021

View: 3447

[공업수학] 2. 라플라스 변환(Laplace Transform) 예제

반면 대수방정식은 인수분해 또는 근의 공식을 통해 쉽게 해를 구할 수 있다는 장점이 있다. 또한 대수방정식의 해를 구하는 과정에서 자연스럽게 초깃값 …

+ 자세한 내용은 여기를 클릭하십시오

Source: subprofessor.tistory.com

Date Published: 12/3/2022

View: 4908

주제와 관련된 이미지 라플라스 변환 증명

주제와 관련된 더 많은 사진을 참조하십시오 라플라스 변환 기본 공식 유도. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

라플라스 변환 기본 공식 유도
라플라스 변환 기본 공식 유도

주제에 대한 기사 평가 라플라스 변환 증명

  • Author: 전기뉴비
  • Views: 조회수 3,954회
  • Likes: 좋아요 36개
  • Date Published: 2020. 6. 22.
  • Video Url link: https://www.youtube.com/watch?v=oF56rGz4Kw4

수학과 사는 이야기

반응형

수학과 물리학자이면서 천문학자였던 피에르 시몬 마르퀴스 데 라플라스는 확률론에서 미분방정식을 아주 쉽게 계산할 수 있게 해주는 적분 변환을 고안하였다. 프랑스의 뉴턴으로 불렸던 그는 가난한 농부의 아들이었지만 훗날 나폴레옹과 친구가 되고 귀족이 되었다.

라플라스 변환을 공부하면 미분방정식을 대수방정식으로 바꾸고 해를 구하고 이를 역변환하여 미분방정식의 해를 구할 수 있게 된다.

라플라스 변환

정의 함수 $f$의 라플라스 변환은 $t \geq 0$에서 정의된 함수를 아래와 같이 적분한 값이 수렴하는 함수다. $$F(s)=\int_{0}^{\infty} e^{-st} f(t) dt = \lim_{b \rightarrow \infty} \int_{0}^{b} e^{-st} f(t) dt$$ 이것을 기호로는 $\mathscr{L}\{f(t)\}=F(s)$로 적는다.

스크립트 글꼴로 쓰인 기호도 뭔가 보기 좋다.

보기 $$\begin{split} \mathscr{L} \{ 1 \} & = \int_{0}^{\infty} e^{-st} \cdot 1\;dt =\lim_{b \rightarrow \infty} \int_{0}^{b} e^{-st} dt \\ &= \lim_{b \rightarrow \infty} \frac{-e^{-st}}{s} \bigg|_{0}^{b} \\ &= \lim_{b \rightarrow \infty} \frac{-e^{-sb}+1}{s} \\ &= \frac{1}{s} \quad s>0 \end{split}\tag{a}$$

이것을 더 짧게 아래와 같이 쓴다.

$$\begin{split} \mathscr{L} \{ 1 \} & = \int_{0}^{\infty} e^{-st} \;dt \\ &= \lim_{b \rightarrow \infty} \frac{-e^{-st}}{s} \bigg|_{0}^{\infty} \\ &= \frac{1}{s} \quad s>0 \end{split}$$

정리

라플라스 변환은 선형 변환(linear transform)이다.

증명은 적분의 성질이므로 아주 간단하다. $$\int_{0}^{\infty} e^{-st}[\alpha f(t)+\beta g(t)]\;dt =\alpha \int_{0}^{\infty} e^{-st} f(t) dt +\beta \int_{0}^{\infty} e^{-st} g(t) dt$$

$\blacksquare$

$$\mathscr{L}\{\alpha f(t) +\beta g(t)\}=\alpha \mathscr{L} \{ f(t) \} +\beta \mathscr{L} \{ g(t) \}=\alpha F(s)+\beta G(s) $$

정리

$f(t)$가 구간 $[0, \infty)$에서 구간별로 연속(piecewise coutinuous)이고 $t>T$일 때 지수 차수(exponential order)이면 $s>c$일 때 $\mathscr{L} \{ f(t) \} $가 존재한다.

참고

함수 $f$가 주어진 구간에서 불연속인 점이 기껏해야 유한개이거나 연속이면 함수 $f$는 구간별로 연속이다.

$t>T$일 때 $|f(t)|0, T>0$가 존재하면 $f$는 지수 차수라 말한다.

증명 $$\begin{split} \mathscr{L} \{ f(t) \} &=\int_{0}^{\infty} e^{-st} f(t) dt \\ &=\int_{0}^{T} e^{-st} f(t) dt +\int_{T}^{\infty} e^{-st} f(t) dt=I_1 +I_2\end{split}$$

$I_1$은 $f$가 연속인 구간별로 적분하면 되므로 $I_2$가 존재함을 밝히면 된다.

$$\begin{split} |I_2| & \leq \int_{T}^{\infty} | e^{-st} f(t) | dt \leq M \int_{T}^{\infty} e^{-st} e^{ct} dt \\ &= M \int_{T}^{\infty} e^{-(s-c)t} dt = -M \frac {e^{-(s-c)t} }{s-c} \bigg|_{T}^{\infty} \\ &= M \frac {e^{(s-c)T}}{s-c} \quad for \quad s > c \end{split}$$

$\blacksquare$

중요한 몇몇 함수를 변환해 보자.

1.

$\displaystyle{\begin{split} \mathscr{L} \{ t \} & = \int_{0}^{\infty} e^{-st} t \;dt \\ &= \frac{-te^{-st}}{s} \bigg|_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} \;dt \\ &= \frac{1}{s} \mathscr{L} \{ 1 \} =\frac{1}{s} \bigg( \frac{1}{s} \bigg) \\&= \frac{1}{s^2} \quad s>0 \end{split}}$

$\displaystyle{\begin{split} \mathscr{L} \{ t^n \} & = \int_{0}^{\infty} e^{-st} t^n \;dt \\ &= \frac{-t^n e^{-st}}{s} \bigg|_{0}^{\infty} + \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1}\;dt \\ &= \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1}\;dt \\ &= \frac{n}{s} \mathscr{L} \{ t^{n-1} \} \end{split}}$

2.

$\displaystyle{\begin{split} \mathscr{L} \{ e^{-3t} \} & = \int_{0}^{\infty} e^{-st} e^{-3t} \;dt \\ & = \int_{0}^{\infty} e^{-(s+3)t} \;dt \\ &= \frac{-e^{(s+3)t}}{s} \bigg|_{0}^{\infty} \\ &= \frac{1}{s+3} \quad s>-3 \end{split}}$

3.

$\displaystyle { \begin{split} \mathscr{L} \{ \sin 2t \} & = \int_{0}^{\infty} e^{-st} \sin 2t \;dt \\ &= \frac{-e^{-st} \sin 2t}{s} \bigg|_{0}^{\infty} + \frac{2}{s} \int_{0}^{\infty} e^{-st} \cos 2t \;dt \\ &= \frac{2}{s} \int_{0}^{\infty} e^{-st} \cos 2t \;dt , \quad s>0 \\ & = \frac{2}{s} \bigg[ \frac{e^{-st} \cos 2t}{s} \bigg|_{0}^{\infty} – \frac{2}{s} \int_{0}^{\infty} e^{-st} \sin 2t \;dt \bigg] \\&= \frac{2}{s^2} – \frac{4}{s^2} \mathscr{L} \{ \sin 2t \}\end{split}}$

$\displaystyle{\begin{split}\\ \bigg[ 1+\frac{4}{s^2}\bigg] \mathscr{L} \{\sin 2t \} &= \frac{2}{s^2} \\ \mathscr{L} \{\sin 2t \}&= \frac{2}{s^2 +4} \quad s>0 \end{split}}$

4.

$\displaystyle{ \begin{split} \mathscr{L} \{ 3t -5 \sin 2t \}& = 3 \mathscr{L}\{ t \} -5 \mathscr{L} \{ \sin 2t \} \\ &= 3\cdot \frac{1}{s^2}-5\cdot \frac{2}{s^2 +4}\\ &= \frac{-7s^2 +12}{s^2 (s^2 +4)},\quad s>0 \end{split}}$

중요한 변환을 적어보면 아래와 같다. $\displaystyle{\mathscr{L} \{ 1 \} = \frac{1}{s} \tag{a}}$ $\displaystyle{\mathscr{L} \{ t^n \} = \frac{n!}{s^{n+1}} \quad n=1,2,3,\cdots \tag{b}}$ $\displaystyle{\mathscr{L} \{ e^{at} \} = \frac{1}{s-a} \tag{c}}$ $$\displaystyle{\mathscr{L} \{ \sin kt \} = \frac{k}{s^2 +k^2} \tag{d}}$$ $$\displaystyle{\mathscr{L} \{ \cos kt \} = \frac{s}{s^2 +k^2} \tag{e}}$$ $$\displaystyle{\mathscr{L} \{ \sinh kt \} = \frac{k}{s^2 -k^2} \tag{f}}$$ $$\displaystyle{\mathscr{L} \{ \cosh kt \} = \frac{s}{s^2 -k^2} \tag{g}}$$

5

$\displaystyle{ \begin{split} \mathscr{L} \{ \sin^2 t \}& = 3 \mathscr{L}\{ \frac{1-\cos 2t}{2} \}= \frac{1}{2} \mathscr{L} \{ 1 \} -\frac{1}{2} \mathscr{L} \{ \cos 2t \}\\ &= \frac{1}{2}\cdot \frac{1}{s} -\frac{1}{2}\cdot \frac{s}{s^2 +4}= \frac{2}{s (s^2 +4)}. \end{split}}$

라플라스 역변환

라플라스 변환은 아래와 같이 역변환을 정의한다.

$$f(t)=\mathscr{L}^{-1}\{F(s) \}$$

중요한 역변환을 적어보면 아래와 같다. $\displaystyle{ 1 = \mathscr{L}^{-1} \bigg\{ \frac{1}{s} \bigg\} \tag{a}}$ $\displaystyle{t^n = \mathscr{L}^{-1} \bigg\{ \frac{n!}{s^{n+1}} \bigg\} \quad n=1,2,3,\cdots \tag{b}}$ $\displaystyle{ e^{at} = \mathscr{L}^{-1} \bigg\{ \frac{1}{s-a} \bigg\} \tag{c}}$ $$\displaystyle{ \sin kt = \mathscr{L}^{-1} \bigg\{ \frac{k}{s^2 +k^2} \bigg\} \tag{d}}$$ $$\displaystyle{ \cos kt = \mathscr{L}^{-1} \bigg\{ \frac{s}{s^2 +k^2} \bigg\} \tag{e}}$$ $$\displaystyle{ \sinh kt = \mathscr{L}^{-1} \bigg\{ \frac{k}{s^2 -k^2} \bigg\} \tag{f}}$$ $$\displaystyle{ \cosh kt = \mathscr{L}^{-1} \bigg\{ \frac{s}{s^2 -k^2} \bigg\} \tag{g}}$$

1. $\displaystyle{ \mathscr{L}^{-1} \bigg\{ \frac{1}{s^5} \bigg\} =\frac{1}{4!}\mathscr{L}^{-1} \bigg\{ \frac{4!}{s^5} \bigg\}=\frac{1}{24}t^4}$

2. $\displaystyle{ \mathscr{L}^{-1} \bigg\{ \frac{1}{s^2 +64} \bigg\} =\frac{1}{8}\mathscr{L}^{-1} \bigg\{ \frac{8}{s^2+ 64} \bigg\}=\frac{1}{8}\sin 8t}$

3. $\displaystyle{ \mathscr{L}^{-1} \bigg\{ \frac{3s+5}{s^2 +7 } \bigg\} =3 \mathscr{L}^{-1} \bigg\{ \frac{s}{s^2 +7 } \bigg\}+\frac{5 }{\sqrt7}\mathscr{L}^{-1} \bigg\{ \frac{\sqrt 7 }{s^2 +7 } \bigg\}=3\cos \sqrt7 t+\frac{5}{\sqrt7}\sin \sqrt7 t}$

4. 고등학교에서 배우는 부분분수로 분리하는 방법을 써서 다양한 역변환을 할 수 있다.

예를 들면 $\displaystyle{\frac{1}{(s-1)(s+2)(s+4)}=\frac{1/15}{s-1}-\frac{1/6}{s+2}+\frac{1/10}{s+4}}$이므로

$\displaystyle{ \mathscr{L}^{-1} \bigg\{ \frac{1}{(s-1)(s+2)(s+4)} \bigg\}=\frac{1}{15} \mathscr{L}^{-1} \bigg\{ \frac{1}{s-1} \bigg\} -\frac{1}{6} \mathscr{L}^{-1} \bigg\{ \frac{1}{s+2} \bigg\}+\frac{1}{10} \mathscr{L}^{-1} \bigg\{ \frac{1}{s+4} \bigg\}= \frac{1}{15}e^t -\frac{1}{6}e^{-2t}+\frac{1}{10}e^{-4t}}$

정리

$f(t)$가 구간 $[0,\infty)$에서 구간별 연속이고 $t>T$에 대하여 지수 차수이면 $\displaystyle{\lim_{s\rightarrow \infty}\mathscr{L}\{f(t)\}=0}$이다.

증명 $f(t)$가 구간 $[0,\infty)$에서 구간별 연속이면 $0\leq t \leq T$에서 유계되어 있다.

$$|f(t)|\leq M_1 =M_1 e^{0t}$$

또한 지수 차수를 가지므로 $t>T$에 대하여 아래와 같이 유계되어 있다.

$$|f(t)| \leq M_2e^{\gamma t}$$

$M=max\{M_1, M_2\},\quad c=max\{0,\gamma\}$라고 하면

$$|\mathscr{L}\{f(t)\}| \leq \int_{0}^{\infty} e^{-st} |f(t)|\;dt \leq M \int_{0}^{\infty} e^{-st} e^{ct}\;dt = -M \frac{e^{-s-c)t}}{s-c}\bigg|_{0}^{\infty}=\frac{M}{s-c}$$

그러므로 $s \rightarrow \infty$일 때, $|\mathscr{L}\{f(t)\}| \rightarrow 0$이므로 $\mathscr{L}\{f(t)\} \rightarrow 0$이다.

$\blacksquare$

반응형

#3.2 Laplace Transform-2(라플라스변환법 기본공식들)

반응형

#0. 기본공식

지난글에서 간단하게 변환이란것에 대해 소개하고, 그 중 라플라스 변환이란 것에 대해서 알아보았습니다. 오늘은 라플라스 변환공식들중 대표적인 것(다항함수, 지수함수, 삼각함수)들을 직접 계산해보고 결과를 얻어내 보겠습니다. 위의 표는 라플라스 변환표 입니다.

#1. 다항함수

다항함수의 경우 차수가 커져도 일정한 규칙이 보이기 떄문에 일단 t 부터 알아보도록하겠습니다.

t제곱도 넣어보도록 하겠습니다.

마지막항을 보면 t를 넣었을때와 비교해서 바뀐건 2t로 된것이지요? 즉 t를 넣었을때의 과정이 2번 이루어지고 t의 차수가 한번 더 곱해지는 것과 같으므로 값은

이 됩니다. t 세제곱을 넣어도 마찬가지일것입니다. 결국 분모의 차수는 t의 차수를 따라가고 적분되면서 t의 차수가 한번 더 곱해진다고 생각하면 분자는 1x2x3x4x….xN의 형태를 띄게 되겠지요. 그래서 일반식을 적어보면

이런식을 가지게 됩니다.

#2. 지수함수

지난 글의 마지막부분을 보면 s-shifting 이란것을 잠시 언급했을겁니다. e^at 같은 경우 라플라스 식안에도 지수함수가 들어가 있기 떄문에 계산이 쉽습니다.

어떤 함수든간에 앞에 e^at 꼴이 곱해져있다면 그만큼 s->s-a를 대입해서 변환 할 수 있습니다. 라플라스는 S세상에서 벌어지는 일이라고 했습니다. 그렇다면 xy평면에서 벌어지는 일과같이 라플라스에서는 s축방향으로 a만큼 평행이동했다고 생각할 수 있습니다. 즉, e^at 는 s축의 방향으로 평행이동할 수 있는 도구인 셈이지요. 이것을 s-Shifting 이라고 합니다. 나중에 복잡한 형태의 라플라스 역변환시에 s-a형태를 발견한다면 평행이동을 통해 더 쉽게 구할 수 있게 되는 것입니다.

#3. 삼각함수

삼각함수의 경우 cos과 sin이 서로 미분했을때 비슷해지기 때문에 서로에 대한 라플라스값을 이용하게 됩니다.

마지막항을 보면 앞의 계수 w/s를 제외하고 보면 sinwt 의 라플라스 변환식과 동일해집니다. 따라서 이것을 반영해서 계산식을 다시 세우면

가 됩니다. 그렇다면 반대로 sin을 라플라스 변환하면 cos에 관한 라플라스가 나오게 되겠죠?

이것을 위의 coswt 변환에 넣어주면

마찬가지로 sin의 변환값에 cos값의 변환을 대입하여 계산해주면

이 됩니다.

#4. s- Shifting

앞에서 언급했던 s축 평행이동입니다. 어떤 함수에 지수함수꼴이 곱해져 있다면 쉽게 변환 할 수 있다는 것이지요. 예시를 통해 확인 하고 넘어가도록 하겠습니다.

이렇게 해서 라플라스변환법의 기본적인 공식들에 대한 증명들을 해보았습니다. 다음글에서는 미분방정식을 직접 라플라스변환하여 좀 더 쉽게 풀이하는 방법들에 대해서 알아보도록 하겠습니다.

반응형

[공업수학] 6.1 라플라스 변환, 라플라스 변환표, 일차변환 (s-shifting)

#공업수학

#라플라스변환

드디어 라플라스 변환입니다. 공업수학에서 배우는 미분방정식은 총 세 가지가 있습니다. Linear ODEs, Power Series, Laplace Transformation. 사실 세 가지 모두 ODE에 관한 내용이지만(거기다 대부분의 경우 Linear) 해법과 형태가 다르다는 점에서 다른 분류로 취급됩니다. 챕터 1부터 3까지 해서 첫 번째 Linear ODEs를 공부하였는데 Power Series(멱급수) 해법은 개인적으로 별로 재미가 없는 파트라 건너뛰고 바로 Awesome한 라플라스 변환을 소개합니다.

6.1부터 6.5까지 총 다섯 개의 게시글로 다뤄질 예정이며 각 게시글에 담긴 개념들은 ‘미분방정식의 해를 구한다’라는 공통적인 목적을 가지고 있습니다. 이를 기억한다면 낯선 개념들 앞에서 ‘이 생소한 걸 왜 이걸 배워야 하는 거지?’ 라는 의문은 어느정도 해소될 수 있을 겁니다.

15강. 라플라스 변환

반응형

[ 라플라스 변환(Laplace Transform) ]

라플라스변환이란 시간영역에있는 함수를 주파수의 영역으로 바꿔주는 함수를 말합니다. 라플라스 변환을 사용하는 이유는 다양한 입력함수에 적용이 가능하다는 점입니다. 그리고 회로의 초기조건들을 알때, 미분방정식을 푸는것보다 훨씬 더 간단하게 회로를 해석할 수 있습니다. 마지막으로 회로전체의 응답을 한 번의 계산으로 쉽게 파악할 수 있습니다. 이제 라플라스 변환의 정의를 해보겠습니다.

시간함수 f(t)를 주파수함수 F(s)로 변환한 모습입니다. 위 식에서 s는 복소수 변수로서 실수와 허수부로 나뉩니다.

$$ s = \sigma+j\omega$$

라플라스 변환에대한 설명을 이어가기 전, 단위계단함수와 임펄스함수에대해서 다루고 넘어가도록하겠습니다.

① 단위계단함수 (Unit Step Function)

단위계단함수는 시간 t가 0보다 작을때는 함수값이 0, 0보다 클때는 함수값이 1입니다. 즉, 특정시간에 스위치를 켰을 때, 회로의 동작을 표현하기에 적합한 함수입니다.

② 임펄스함수

임펄스함수는 t=0일때만 정의되는 함수입니다. 그리고 시간의 전 구간에서 적분을 하면 1이라는 값이 나오게됩니다. 이 함수는 주로 다른 함수와 곱해져 특정시간의 함수값을 추출하는데 사용하게 됩니다. 아날로그-디지털변환에서 신호를 샘플링하는데도 사용되는 함수입니다.

$$f(t)$$ $$F(s)$$ $$\delta(t)$$ 1 $$u(t)$$ $$\frac{1}{s}$$ $$e^-{at}$$ $$\frac{1}{s+a}$$ $$t$$ $$\frac{1}{s^2}$$ $$t^n$$ $$\frac{n!}{s^{n+1}}$$ $$\sin{\omega t}$$ $$\frac{\omega}{s^2+\omega^2}$$ $$\cos{\omega t}$$ $$\frac{s}{s^2+\omega^2}$$ $$sin(\omega t+\theta)$$ $$\frac{s \sin\theta+\omega \cos\theta}{s^2+\omega^2}$$ $$cos(\omega t+\theta)$$ $$\frac{s \sin\theta-\omega \cos\theta}{s^2+\omega^2}$$ $$e^{-at}\sin(\omega t+\theta)$$ $$\frac{\omega}{(s+a)^2+\omega^2}$$ $$e^{-at}\cos(\omega t+\theta)$$ $$\frac{s+a}{(s+a)^2+\omega^2}$$

각 대표적인 시간함수의 라플라스 변환결과를 정리한 표입니다. 위 식에서 2가지식에 대해서 증명하고 넘어가도록 하겠습니다.

성 질 $$f(t)$$ $$F(s)$$ Linearity $$a_1f_1(t)+a_2f_2(t)$$ $$a_1F_1(s)+a_2F_2(s)$$ Scaling $$f(at)$$ $$\frac{1}{a}F(\frac{s}{a})$$ Time Shift $$f(t-a)u(t-a)$$ $$e^{-as}F(s)$$ Frequency Shift $$e^{-at}f(t)$$ $$F(s+a)$$ Time Differentiation $$\frac{df}{dt}$$ $$sF(s)-f(0^-)$$ $$\frac{d^nf}{dt^n}$$ $$s^nF(s)-sf'(0)- … -f^{n-1}(0)$$ Time Integration $$\int_{0}^{t}f(x)dx$$ $$\frac{1}{s}F(s)$$ Frequency Differentiation $$t(f)$$ $$-\frac{d}{ds} F(s)$$ Initial value $$f(0)$$ $$\lim_{s\rightarrow \infty}sF(s)$$ Final value $$f(\infty)$$ $$\lim_{s\rightarrow 0}sF(s)$$ Convolution $$f_1(t) \ast f_2(t)$$ $$F_1(s)F_2(s)$$

위의 표는 라플라스 변환의 성질입니다. 마찬가지로 위의 나온 예에서 몇가지 증명을 통해 식이 성립하는지 보여드리겠습니다.

※ 라플라스 변환의 적용

시간함수 f(t)의 시간에따른 함수값을 나타낸 그래프입니다. 먼저 이 함수를 라플라스 변환하기 이전에 함수를 시간에대한 표현식으로 나타내야합니다.

[ 라플라스 역변환 (Inverse Laplace Transform) ]

주파수영역의 함수 F(s)의 경우 다시 시간함수로 변환하기위해서 라플라스 변환을 역으로 적용하여 원래의 시간함수로 바꿔야만 시간함수에대한 해석을 완료할 수 있습니다. 변환 방법에대해서 간단한 예를 통해 알아보겠습니다.

함수 F(s)를 원래의 시간함수로 돌려놓는 주요 테크닉은 부분 분수로 분해하여 계산하는 방법이 있습니다.

[ 컨볼루션 (Convolution) ]

컨볼루션은 번역하면 합성곱이라고도 합니다. 연산하고자하는 함수 중 하나를 반전시켜 시간축에따라 이동시키면서 그 값을 구하여 얻어내는 값입니다.

$$y(t)=x(t)\ast h(t) = h(t)\ast x(t)$$

컨볼루션은 교환법칙이 성립합니다. 함수 y(t)의 결과값을 구하는 방식 계산과정은 다를 수 있지만, 두 연산의 결과값은 동일합니다. 이제 컨볼루션의 정의대로 예제를 통해 계산해보겠습니다.

$$① 02 $$

$$\int_{t-1}{2} 1\times\2 = 6-2t $$

위 과정들을 종합하여 컨볼루션 연산 결과값 y(t)에대한 그래프를 그려보면

위와 같이 결과가 나옵니다.

이상으로 라플라스변환에대해서 포스팅 마치도록하겠습니다. 다음포스팅에서는 라플라스변환을 회로에 적용하는 방법과 몇 가지 문제를 통해서 확인하도록하겠습니다. 감사합니다 🙂

[공업수학] 2. 라플라스 변환(Laplace Transform) 예제

반응형

사실 공업수학에서 미분방정식의 해를 구하기 위해 사용하는 방법이지만 별도로 미분적분학에 먼저 포스팅한다.

라플라스 변환은 미분방정식을 대수방정식 꼴로 변환시켜 보다 쉬운 방정식을 풀 수 있다는 이점을 가지고 있는 변환법이다.

대수방정식은

이런 애들을 칭하는 말이다. 대수적인 특성을 가지고 있는 방정식을 의미하며(당연히..) 사칙연산을 통해 해를 구할 수 있는 방정식을 의미한다. 미분방정식은 미분개념과 적분개념이 모두 포함되어 있는 방정식인데, 이 방정식은 애초에 사람이 인지하기가 어렵다. 변화율을 인지하는 것 자체가 어렵기도 하고 지수함수나 삼각함수와 같은 초월함수들이 포함될 경우 더더욱 이해하기가 어렵다. 반면 대수방정식은 인수분해 또는 근의 공식을 통해 쉽게 해를 구할 수 있다는 장점이 있다. 또한 대수방정식의 해를 구하는 과정에서 자연스럽게 초깃값이 사용되므로 해의 형태가 일반해가 아닌 특수해 형태로 나온다는 장점이 있다.(미지상수가 없다는 뜻!)

라플라스 변환을 통해 미분방정식을 대수방정식으로 바꾸고, 대수방정식의 해를 구한 다음 다시 라플라스 역변환을 통해 원래 미분방정식의 해를 얻을 수 있다. 라플라스 역변환은 간단히 대수방정식을 다시 미분방정식으로 바꾸는 것을 말한다

미분방정식의 해를 구하기 위해서는 두 가지 공식을 사용한다. ①기본 변환표, ②미분공식. 추가적으로 적분공식도 올려놓는다

s-shifting 이나 t-shifting 에 대해서는 따로 언급하지 않겠다. 보다 자세히 다루는 것은 추후 공업수학에서 포스팅할 때이지 않을까 싶다

(0) 라플라스 변환의 정의

라플라스 변환의 정의

이 정의를 이용해 시간에 대한 함수 f를 s라는 새로운 변수에 대한 함수 F로 변환시킬 수 있다. 물론 F(s)=f(t)를 의미하지는 않는다. s와 t 사이에는 어떠한 관계도 성립하지 않기 때문에.

예시를 통해 라플라스 변환을 더 알아보자

이에 더해 라플라스 변환이 가지고 있는 매우 중요한 성질, 선형성 또한 유도해보자

라플라스 변환의 선형성(Linearity)

미분방정식은 대개 여러 개의 항으로 구성되어있기 때문에 선형성을 가진다는 사실을 알고 있어야 정상적으로(정석적으로) 해를 구할 수 있다

(1) 라플라스 변환표

erwin kreyszig 의 advanced engineering mathematics 10th edition

공식이 더 있긴 한데 이정도면 충분하다. 나머지는 미분공식, 적분공식으로 직접 구할 수 있는 것들이다. 왼쪽에 F(s)가 위치한 이유는 위 테이블을 가지고 역변환 하라고.

(2) 미분공식, 적분공식

미분방정식은 함수f의 도함수가 포함되어있는 방정식이다. 따라서 미분방정식을 라플라스 변환을 통해 풀 때 도함수에 대한 라플라스 변환을 수행하는 것은 필수적이다. 추가적으로 적분에 대한 공식 또한 미분공식의 유도과정과 같은 방식으로 유도할 수 있다

라플라스 미분공식

유도 과정은 다음과 같다

먼저, 1계 도함수에 대한 유도 과정이다

다음으로 n계 도함수에 대한 유도과정이다

+) 적분공식

출처 : erwin kreyszig 의 advanced engineering mathematics 10th edition

반응형

(3) 라플라스 변환을 이용해 미분방정식 풀기

(예제 1)

(예제 2)

기본적으로 변환표를 이용하기 위해서는 부분분수 합 꼴로 변환해주어야 한다

Any Qustions, Any Comments WELCOME 🙂

오타나 오류 지적 감사히 받습니다

반응형

키워드에 대한 정보 라플라스 변환 증명

다음은 Bing에서 라플라스 변환 증명 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 라플라스 변환 기본 공식 유도

  • 전자
  • 전자기학
  • 전력공학
  • 전기이론
  • 공무원
  • 전기기기
  • 전기산업기사
  • 전기설비
  • 전기기사
  • 공기업
  • 전기기초
  • 전기기능사
  • 전기
  • 회로이론
  • 전기직
  • NCS
  • 기출문제
  • ncs
  • 전공
  • 필기
  • 시험
  • 필기시험
  • 라플라스
  • laplace
  • 변환
  • 공식
  • 증명
  • 유도

라플라스 #변환 #기본 #공식 #유도


YouTube에서 라플라스 변환 증명 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 라플라스 변환 기본 공식 유도 | 라플라스 변환 증명, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.

See also  주식 투자 전략 | 주식투자 2가지만 사모으세요(Ft.홍춘욱 박사) 인기 답변 업데이트

Leave a Comment